
© Copyright Malina Software

The “Theory” and Practice of
Modeling Language Design –

“Теорија” и пракса пројектовања
језика за моделирањe софтверских

система
Бранислав Селић

Malina Software Corp., Canada
Zeligsoft (2009) Ltd., Canada
Simula Research Labs, Norway
University of Toronto, Canada
Carleton University, Canada

selic@acm.org

© Copyright Malina Software 2

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <nSl; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1[nSl];

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

for(int i =0; i <nSl; i++) {

 B1[i] = new consumer(“B1”);

 B1[i].in1(link1);}

}}

A Programming Language SampleA Programming Language Sample

© Copyright Malina Software 3

…and its Model…and its Model

«sc_slave»«sc_slave»

B1B1:consumer:consumer
«sc_method»«sc_method»

A1:A1:producerproducer
start out1 in1

«sc_link_mp»

link1

nSl

© Copyright Malina Software 4

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <nSl; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

for(int i =0; i <nSl; i++) {

 B1[i] = new consumer(“B1”);

 B1[i].in1(link1);}

}}

B1B1:consumer:consumer
«sc_slave»«sc_slave»

B1B1:consumer:consumer
«sc_method»«sc_method»

A1:A1:producerproducer
start out1 in1

«sc_link_mp»

link1

nSl

© Copyright Malina Software 5

ModelModel--Based (Software) Engineering (MBE)Based (Software) Engineering (MBE)

 An approach to system and software development in which
software models play an indispensable role

 Based on two time-proven ideas:

switch (state) {

 case‘1:action1;

 newState(‘2’);

 break;

 case‘2:action2;

 newState(‘3’);

 break;

 case’3:action3;

 newState(‘1’);

 break;}

(2) AUTOMATION

S1

S3

S2

e1/action1

e2/action2

e3/action3

switch (state) {

 case‘1:action1;

 newState(‘2’);

 break;

 case‘2:action2;

 newState(‘3’);

 break;

 case’3:action3;

 newState(‘1’);

 break;}

(1) ABSTRACTION

S1

S3

S2

e1/action1

e2/action2

e3/action3

Realm of

Realm of
modeling
languages

Realm of Realm of
tools

© Copyright Malina Software 6

Talk OutlineTalk Outline

 Models: What and Why

 Modeling Language Design

 Modeling Language Specification

 Summary

© Copyright Malina Software 7

Engineering ModelsEngineering Models

 ENGINEERING MODEL: A selective representation
of some system that specifies, accurately and
concisely, all of its essential properties of interest
for a given set of concerns*

• We don’t see everything

• adjusted

• We don’t see everything
at once

• What we do see is adjusted
to human understanding

 * Selektivni prikaz
nekog sistema, koji
predstavlja, precizno i
koncizno, suštinske
odlike tog sistema sa
odredjene tačke
gledišta

© Copyright Malina Software 8

Why Do Engineers Build Models?Why Do Engineers Build Models?

 To understand

 ...problems and solutions

 Knowledge acquisition

 To communicate

 ...understanding and design intent

 Knowledge transfer

 To predict

 ...the interesting characteristics of system under study

 Models as surrogates

 To specify

 ...the implementation of the system

 Models as “blueprints”

© Copyright Malina Software 9

Types of Engineering ModelsTypes of Engineering Models

 Descriptive: models for understanding,
communicating, and predicting

 E.g., scale models, mathematical models, qualitative models,
documents, etc.

 Tend to be highly abstract (detail removed)

 Prescriptive: models as specifications

 E.g., architectural blueprints, circuit schematics, state
machines, pseudocode, etc.

 Tend to be detailed so that the specification can be
implemented

 Q: Is it useful to have models that can

serve both kinds of purposes?

© Copyright Malina Software 10

Characteristics of Useful Engineering ModelsCharacteristics of Useful Engineering Models

 Purpose oriented:

 Constructed to address a specific set of concerns/audience

 Abstract

 Emphasize important characteristics while obscuring irrelevant ones

 Understandable

 Expressed in a form that is readily understood by intended audience

 Accurate

 Faithfully represents the modeled system

 Predictive

 Can be used to answer questions about the modeled system

 Cost effective

 Should be much cheaper and faster to construct than actual system

 A useful engineering model must satisfy
at least these core characteristics.

© Copyright Malina Software 11

Modeling Software

© Copyright Malina Software 12

What’s a Software Model?What’s a Software Model?

 SOFTWARE MODEL: An engineering model of a
software system from one or more viewpoints
specified using one or more modeling languages

 E.g.:

B

A B
0..*

C

0..1
0..*

«import»

0..*

left:B right:B

m1

m4

m2

m3

Structural

(design-time)

view

Structural

(design-time)

view

a : A

left:B right:B c : C

Execution

(run-time)

view

Execution

(run-time)

view

© Copyright Malina Software 13

What’s a Modeling Language?What’s a Modeling Language?

 MODELING LANGUAGE: A computer language
intended for constructing models of systems and the
contexts in which these systems operate

 Examples:

 AADL, Matlab/Simulink, Modelica, SDL, SysML, UML, etc.

© Copyright Malina Software 14

“Classical” Software Modeling Languages“Classical” Software Modeling Languages

 Flow charts, SA/SD, 90’s OO notations (Booch,
OMT, OOSE, UML 1)

 Most of them were intended exclusively for
constructing descriptive models

 Informal “sketching” [M. Fowler]*

 No perceived need for high-degrees of precision

 Languages are ambiguous and open to interpretation 
source of undetected miscommunication

*http://martinfowler.com/bliki/UmlAsSketch.html

© Copyright Malina Software 15

Classical SW Modeling: SA/SDClassical SW Modeling: SA/SD

 “…bubbles and arrows, as opposed to programs,
…never crash”

-- B. Meyer
“UML: The Positive Spin”

American Programmer, 1997

Monitor
PH

Raise
PH

Control
PH

PH reached X

Current PH

start

stop

Input valve
control

Modeling languages Modeling languages
have yet to
recover from this
“debacle”

Q: What does this Q: What does this
“bubble” really mean?

Q: How is it implemented
in code?

© Copyright Malina Software 16

New Generation of Modeling LanguagesNew Generation of Modeling Languages

 Formal languages designed for modeling

 Support for both descriptive and prescriptive models

 ...sometimes in the same language

 Key objectives:

 Well-understood and precise semantic foundations

 Can be formally (i.e., mathematically) analyzed (qualitative
and quantitative analyses)

 And yet, can still be used informally (“sketching”) if desired

© Copyright Malina Software 17

Modeling Modeling vsvs Programming LanguagesProgramming Languages

 The primary purpose and focus of programming
languages is implementation

 The ultimate form of prescription

 Implementation requires total precision and “full” detail

 Takes precedence over description requirements

 To be useful, a modeling language must support
description

 I.e., communication, prediction, and understanding

 These generally require omission of “irrelevant” detail such
as details of the underlying computing technology used to
implement the software

© Copyright Malina Software 18

Components of a Modeling LanguageComponents of a Modeling Language

 The definition of a modeling language consists of:

 Set of language concepts/constructs (“ontology”)

• e.g., Account, Customer, Class, Association, Attribute, Package

 Rules for combining language concepts (well-formedness
rules)

• e.g., “each end of an association must be connected to a class” A
B
S
T
R
A
C
T

S
Y
N
T
A
X

 CONCRETE SYNTAX (notation/representation)

• e.g., keywords, graphical symbols for concepts

• Mapping to abstract syntax concepts

 SEMANTICS: the meaning of the language concepts

• Comprises: Semantic Domain and Semantic Mapping (concepts
to domain)

© Copyright Malina Software 19

Semantics

Elements of a Modeling LanguageElements of a Modeling Language

Modeling
Language

1 0..*
Concrete
Syntax

0..*

0..1

Semantics
Domain

1..*

Abstract
Syntax

1

1..* 0..*

Concrete
Syntax

Mapping

0..*

Semantics
Mapping

1

© Copyright Malina Software 20

Talk OutlineTalk Outline

 Models: What and Why

 Modeling Language Design

 Modeling Language Specification

 Summary

© Copyright Malina Software 21

Primary Language Design ConcernsPrimary Language Design Concerns

 Who are the primary end users?

 Authors / readers? (i.e., primary use cases)

 What kind of models do they want?

 Descriptive, prescriptive, or both?

 What is the domain?

 What is the application domain and what are its salient
technical characteristics?

© Copyright Malina Software 22

Sidebar: Feature Diagram EssentialsSidebar: Feature Diagram Essentials

PC Purchase
Configuration

3 GB
RAM

1 GB
RAM

Linux
OS

Windows 7
OS

Extras

DVD
drive

Display
Screen

Printer

Mutually exclusiveMutually exclusive
alternatives (exclusive
“or”)

Inclusive ”or”

(but, at least 1)

Inclusive ”or”
alternatives
(but, at least 1)

Mandatory

Mandatory
sub-feature Optional

Optional
sub-feature

Feature or Feature or
concept

© Copyright Malina Software 23

Key Language Design ChoicesKey Language Design Choices
Modeling Language

Features

Specification

Extension

Concrete
Syntax

Model of
Computation

Model
Type

Precision
Level

Abstraction
Range

Scope

Some choices are
inter
Some choices are
inter-dependent

© Copyright Malina Software 24

Selecting Language ScopeSelecting Language Scope

 A common opinion:

 “Surely it is better to design a small language that
is highly expressive, because it focuses on a
specific narrow domain, as opposed to a large and
cumbersome language that is not well-suited to any
domain?”

 Which suggests:

Scope

Domain-
Specific

General
Purpose

But, this may be an
oversimplification
But, this may be an
oversimplification

© Copyright Malina Software 25

Scope: How General/Specific?Scope: How General/Specific?

 Generality often comes at the expense of expressiveness

 Expressiveness: the ability to specify concisely yet accurately
a desired system or property

 Example:

• UML does not have a concept that specifies mutual exclusion devices
(e.g. semaphore)  to represent such a concept in our model, we
would need to combine a number of general UML concepts in a
particular way (e.g., classes, constraints, interactions)

 ...which may(?) be precise, but not very concise

 It also comes at the cost of detail that is necessary to:

 Execute models

 Generate complete implementations

© Copyright Malina Software 26

Specialization: Inevitable TrendSpecialization: Inevitable Trend

 Constant branching of application domains into ever-
more specialized sub-domains

 As our knowledge and experience increase, domain concepts
become more and more refined

• E.g., simple concept of computer memory → ROM, RAM,
DRAM, cache, virtual memory, persistent memory, etc.

 One of the core principles of MBE is raising the
level of abstraction of specifications to move them
closer to the problem domain

• This seems to imply that domain-specific

•

• This seems to imply that domain-specific
languages are invariably the preferred solution

• But, there are some serious hurdles here...

© Copyright Malina Software 27

The Case of Programming LanguagesThe Case of Programming Languages

 Literally hundreds of domain-specific programming
languages have been defined over the past 50 years

 Fortran: for scientific applications

 COBOL for “data processing” applications

 Lisp for AI applications

 etc.

 Some relevant trends

 Many of the original languages are still around

 More often than not, highly-specialized domains still tend to
use general-purpose languages with specialized domain-specific
program libraries and frameworks instead of domain-specific
programming languages

 In fact, the trend towards defining new domain-specific
programming languages seems to be diminishing

 Why is this happening?

© Copyright Malina Software 28

Success* Criteria for a Language (1)Success* Criteria for a Language (1)

 Technical validity: absence of major design flaws
and constraints

 Ease of writing correct programs

 Expressiveness

 Simplicity: absence of gratuitous/accidental
complexity

 Ease of learning

 Efficiency: speed and (memory) space

 Familiarity: proximity to widely-available skills

 E.g., syntax

* “Success” * “Success”  language is adopted by a substantive development
community and used with good effect for practical applications

© Copyright Malina Software 29

Success Criteria for a Language (2)Success Criteria for a Language (2)

 Language Support & Infrastructure:

 Availability of necessary tooling

 Effectiveness of tools (reliability, quality, usability,
customizability, interworking ability)

 Availability of skilled practitioners

 Availability of teaching material and training courses

 Availability of program libraries

 Capacity for evolution and maintenance (e.g.,
standardization)

© Copyright Malina Software 30

Sidebar: Basic Tooling CapabilitiesSidebar: Basic Tooling Capabilities

 Essential

 Model Authoring

 Model validation
(syntax, semantics)

 Model export/import

 Document generation

 Version management

 Model compare/merge

 Useful (to Essential)

 Code generation

 Model
simulation/debug/trace

 Model transformation

 Model review/inspection

 Collaborative
development support

 Language customization
support

 Test generation

 Test execution

 Traceability

© Copyright Malina Software 31

Language SizeLanguage Size

 How complex (simple) should a language be to make
it effective?

simple complex

Turing

machine

language

C Java PL/I Java +

Basic Java libs +

Java-based frameworks

C++

 The art of computer language design lies in finding the right
balance between expressiveness and simplicity

– Need to minimize accidental complexity while recognizing and
respecting essential complexity

– Small languages solve small problems

– No successful language has ever gotten smaller

limited expressive

© Copyright Malina Software 32

Practical Issues of ScopePractical Issues of Scope

 Practical systems often involve multiple
heterogeneous domains

 Each with its own ontology and semantic and dedicated
specialists

 Example: a telecom network node system

 Basic bandwidth management

 Equipment and resource management

 Routing

 Operations, administration, and systems management

 Accounting (customer resource usage)

 Computing platform (OS, supporting services)

© Copyright Malina Software 33

The Fragmentation ProblemThe Fragmentation Problem
 FRAGMENTATION PROBLEM: combining overlapping

independently specified domain-specific subsystems,
specified using different DSLs, into a coherent and
consistent whole (i.e., single implementation)

Network Node

Comm.
Channel

Bandwidth Mgmt. System

Resource Mgmt. System

Call Processing System

Sadly, there are no generic composition (weaving)
rules
Sadly, there are no generic composition (weaving)
rules – each case has to be handled individually

© Copyright Malina Software 34

Approach to Dealing with FragmentationApproach to Dealing with Fragmentation

 Having a common syntactic and semantic foundations for the
different DSLs seems as if it should facilitate specifying the
formal interdependencies between different DSMLs

Common Abstract Syntax and Semantic Foundation

DSL1 Refinements

DSL1 Class Library

DSL2 Refinements

DSL2 Class Library

. . .etc.

 NB: Same divide and conquer approach can be used to
modularize complex languages

 Core language base + independent sub-languages (e.g., UML)

© Copyright Malina Software 35

Selecting An Abstraction RangeSelecting An Abstraction Range

 This decomposes into two separate questions:

 What is a suitable level of abstraction of the language?

 How much (implementation-level) detail should the language
concepts include?

 The answers depend on other design choices

Modeling Language
Features

Specification

Extension

Concrete
Syntax

Model of
Computation

Model
Type

Precision
Level

Scope

Executable

Abstraction
Range

© Copyright Malina Software 36

Abstraction Range of Computer LanguagesAbstraction Range of Computer Languages

Application

domain

specific

Computing

technology

specific

Modeling
language
concepts

How much
detail do we

provide?

How far up
do we go?

Normally determined by Normally determined by
the type and level of
description desired

Normally determined by Normally determined by
the type and level of
prescription desired

© Copyright Malina Software 37

Selecting a Precision LevelSelecting a Precision Level
Modeling Language

Features

Specification

Extension

Concrete
Syntax

Model of
Computation

Model
Type

Abstraction
Range

Scope

Precision
Level

Informal Formal

Ad Hoc Codified Precise Executable Implementation

© Copyright Malina Software 38

FormalityFormality

 Based on a well understood mathematical theory with existing
analysis tools

 E.g., automata theory, abstract state machines, Petri nets, temporal
logic, process calculi, queueing theory, Horne clause logic

 NB: precise does not necessarily mean detailed

 Formality provides a foundation for automated validation of
models

 Model checking (symbolic execution)

 Theorem proving

 However, the value of these is constrained due to scalability issues
(“the curse of dimensionality”)

 It can also help validate the language definition

 But, it often comes at the expense of expressiveness

 Only phenomena recognized by the formalism can be expressed
accurately

© Copyright Malina Software 39

Precision vs. DetailPrecision vs. Detail

 A specification can be precise but still leave out
detail:

 E.g., we can identify a set very precisely without
necessarily specifying the details associated with its
members

Bob

Karl

Alice

Jill

Peggy

Adults

Fred

We state very

its members

We state very
precisely as to what
constitutes the set
of Adults of some
population (age  21)
without being specific
about details such as
names or genders of
its members

back

© Copyright Malina Software 40

Ad Hoc “Languages”Ad Hoc “Languages”

 Mostly notations created for specific cases (not intended
for reuse)

 Used exclusively for descriptive purposes

 No systematic and comprehensive specification of syntax
or semantics

 Appeal to intuition

Services LayerServices Layer

RUFRUF

SocketsSockets
MemoryMemory
ManagerManager

CasterCaster

PrintPrint FileFile

CoreCore

BStackBStack

CStackCStack

PosterPoster

MessagesMessages

LogLog

© Copyright Malina Software 41

Codified (Informal) LanguagesCodified (Informal) Languages

 Example: UML, OMT, SysML, ...

 Characteristics:

 Defined: An application-independent language specification
exists

 Some aspects of the language are fully defined (usually:
concrete syntax, semantics)

 Semantics usually based on natural language and other
informal specification methods

 Designed primarily for descriptive modeling

 But, may also be used partly for specification (e.g., partial
code generation/code skeletons)

© Copyright Malina Software 42

Precise LanguagesPrecise Languages

 Examples: Object Constraint Language (OCL),
Layered Queueing Networks (LQN)

 Fully defined semantics (domain and mapping)

 High level of abstraction but typically cover
relatively small range

 I.e., lacking detail for execution or implementation

 Often declarative

 Mostly designed for prescription (e.g., prediction
and analysis), but may also be used for specification

© Copyright Malina Software 43

Executable LanguagesExecutable Languages

 “Models that are not executable are like cars
without engines”, [D. Harel]

 Examples: Modelica, Matlab

 A subcategory of precise languages covering a range
that includes sufficient detail for creating
executable models

 But, may be missing detail required for automatic
generation of implementations

 Often based on operational semantics that may not be
easily analyzed by formal methods (due to scalability issues)

 Rationale:

 Enables early detection of design flaws

 Helps develop engineering intuition and confidence

© Copyright Malina Software 46

Implementation (Modeling) LanguagesImplementation (Modeling) Languages

 Computer languages that:

 Provide concepts at high levels of abstraction suitable for
descriptive purposes, and also

 Include detailed-level concepts such that the models can
provide efficient implementations through either automatic
code generation or interpretation

 Examples: UML-RT, Rhapsody UML, SDL-2000,
Matlab/Simulink, etc.

© Copyright Malina Software 47

Language Abstraction LevelsLanguage Abstraction Levels

Application

specific

Computing

technology

specific

Assemblers (2G),
machine
languages (1G)

Classical (3G)
programming

languages

Modeling
languages

Implementation

level

Compiler Compiler
filled detailfilled detail

Degree of
(computing
technology)
abstraction

© Copyright Malina Software 48

Full Range Modeling LanguagesFull Range Modeling Languages

 A number of “descriptive” modeling languages have
evolved into fully-fledged implementation languages

Application

specific

Computing

technology

specific

Assemblers (2G),
machine
languages (1G)

Classical (3G)
programming

languages

Modeling
languages

Implementation

level

Compiler Compiler
filled detailfilled detail

Degree of
(computing
technology)
abstraction

Action
languages

Translator Translator
filled filled detaildetail

e.g., UML e.g., UML e.g., UML e.g., UML
Action Action
LanguageLanguage

© Copyright Malina Software 49

Precision Level CategoriesPrecision Level Categories

 A more refined categorization based on degree of “formality”

 Precision of definition, internal consistency, completeness,
level of detail covered

PRECISE Defined, formal, consistent
Analysis,
Prediction

CODIFIED Defined, informal
Documentation,

Analysis

AD HOC Undefined, informal
Documentation,

Analysis (no reuse)

EXECUTABLE
Defined, formal, consistent,

complete
Analysis,
Prediction

IMPLEMENTATION
Defined, formal, consistent,

complete, detailed
Prediction,

Implementation

Category Characteristics Primary Purpose

© Copyright Malina Software 54

Selecting a Model TypeSelecting a Model Type
Modeling Language

Features

Specification

Extension

Concrete
Syntax

Model of
Computation

Precision
Level

Abstraction
Range

Scope

Model Type

Descriptive Prescriptive

With the With the

support both types support both types
of modelsof models

With the With the
appropriate choice appropriate choice
of of Abstraction Abstraction
RangeRange and and
Precision Level Precision Level in in
combination with combination with
suitable model suitable model
transforms, it is transforms, it is
possible to define possible to define
languages that languages that
support both types support both types
of modelsof models

© Copyright Malina Software 55

Pragmatics: Multiple Models NeededPragmatics: Multiple Models Needed

 In reality, it is generally not practical to have a single
model that covers all possible levels of abstraction

 But, it is possible to formally (i.e., electronically) couple
different models via persistent model transforms

Abstract Model

m'

a' b'

Detailed Model

a1 a2 c1 b1

b2 c2

m1
m2

m3

m6

m4
m5

NB: The same language
and tools are used for

NB: The same language
and tools are used for
both models

© Copyright Malina Software 56

Selecting a Model of ComputationSelecting a Model of Computation

 Model of Computation: A conceptual framework
(paradigm) used to specify how a (software) system
realizes its prescribed functionality

 Where and how does behavior (i.e., computation) occur

 Derived usually from domain semantics

Modeling Language
Features

Specification

Extension

Concrete
Syntax

Model of
Computation

Model
Type

Precision
Level

Abstraction
Range

Scope

© Copyright Malina Software 57

Key Dimensions of Key Dimensions of MoCMoC

 Involves a number of inter-related decisions

Model of
Computation

Computational
Paradigm

Concurrency
Paradigm

Causality
Paradigm

Distribution
Paradigm

Semantic
Domain

Interaction
Paradigm

© Copyright Malina Software 58

Selecting a Computational ParadigmSelecting a Computational Paradigm

Computational
Paradigm

ControlFlow
Based

DataFlow
Based

Object
Oriented

Flow
Based

Model of
Computation

Concurrency
Paradigm

Causality
Paradigm

Distribution
Paradigm

Semantic
Domain

Interaction
Paradigm

© Copyright Malina Software 59

Other Other MoCMoC DimensionsDimensions

 Concurrency paradigm: does computation occur sequentially
(single thread) or in parallel (multiple threads)?

 Causality paradigm: what causes behavior

 event driven, control driven, data driven (functional), time driven,
logic driven, etc.

 Execution paradigm: nature of behavior execution

 Synchronous (discrete), asynchronous, mixed (LSGA)

 Interaction paradigm: how do computational entities interact

 synchronous, asynchronous, mixed

 Distribution paradigm: does computation occur in a single site
or multiple?

 Multisite ( concurrent execution) vs. single site

 If multisite: Coordinated or uncoordinated (e.g., time model, failure
model)?

NB: These choices require a deep understanding of computing NB: These choices require a deep understanding of computing
technology and cannot be made easily by non-experts

© Copyright Malina Software 60

SemanticsSemantics

 The meaning of language concepts

 Specified by relating them to concepts of a “well-
understood” different domain

 E.g.,

UML
Class

(concept)

Shared
human

knowledge

A class describes

a set of objects

that share the

same

specifications of

features,

constraints, and

semantics

Semantic Mapping Semantic Domain

© Copyright Malina Software 61

“Formal” Semantics“Formal” Semantics

 The mapping and the domain are defined using
precisely defined domains and mappings

 Formal mathematical frameworks (e.g., first-order logic,
abstract state machines, process algebras, IO streams,
etc.) or

 Executable computer languages (e.g., Java, Prolog)

• Which may themselves have a formal semantics definition

 Example:

 Base UML (bUML) is defined in terms of mappings to the
Process Specification Language (PSL), which is itself based
on situational calculus and first order logic

 Foundational UML (fUML) is defined operationally as a
bUML program

© Copyright Malina Software 62

Selecting a Semantics DomainSelecting a Semantics Domain

 Avoid sophisticated mathematical formalisms

 Difficult to understand and verify (unless suitable tools are
available)

 Operational methods are generally preferred in practice

 Choose a domain with existing tool support

 Enables verification of the semantics specification itself

 Enables verification/prediction of model properties

 Examples:

• Abstract state machines

• Temporal Logic of Actions

• Process Specification Language

© Copyright Malina Software 63

Pragmatics: Multiple (Nested) Pragmatics: Multiple (Nested) MoCsMoCs

 Some modeling
languages use a
combination of
MoCs (e.g., UML)

«sc_method»

producer
start out1

NotStarted

Started

start

producer

St1 St2

void void generate ()
{for (int i=0; i<10;
i++)
{out1 = i;}}

/generate ()

EventEvent driven driven EventEvent--driven driven
concurrent concurrent
MoCMoC

ControlControl--flow flow
driven driven MoCMoC

Distributed Distributed
MoCMoC

© Copyright Malina Software 64

Selecting a Concrete SyntaxSelecting a Concrete Syntax
Modeling Language

Features

Specification

Extension

Model of
Computation

Model
Type

Precision
Level

Abstraction
Range

Scope

Concrete
Syntax

Surface
Syntax

Interchange
Syntax

© Copyright Malina Software 65

State of the ArtState of the Art

 “Very little is documented about why particular
graphical conventions are used. Texts generally
state what a particular symbol means without giving
any rationale for the choice of symbols or saying
why the symbol chosen is to be preferred to those
already available. The reasons for choosing
graphical conventions are generally shrouded in
mystery.” [S. Hitchman]*

* S. Hitchman, “The Details of Conceptual Modeling Notations are Important –

A Comparison of Relationship Normative Language”, Comms. of the AIS, 9, 2002.

© Copyright Malina Software 66

Concrete Concrete Syntax DesignSyntax Design

 Two main forms:

 For computer-to-computer interchange (e.g., XMI)

 For human consumption – “surface” syntax

 Designing a good surface syntax is the area that we understand least

 If a primary purpose of models is communication and understanding, what syntactical
forms should we use for a given language?

 D. Moody, “The ‘Physics’ of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering”, IEE Transactions on Software Engineering,
vol. 35, no.6, Nov./Dec. 2009

 Requires multi-disciplinary skills

 Domain knowledge

 Computer language design

 Cognitive science

 Psychology

 Cultural Anthropology

 Graphic design

 Computer graphics

© Copyright Malina Software 67

A Couple of Thoughts on GraphicsA Couple of Thoughts on Graphics

 “Whenever someone draws a picture to explain a
program, it is a sign that something is not
understood.” – E. Dijkstra*

 “Yes, a picture is what you draw when you are
trying to understand something or trying to help
someone understand.” – W. Bartussek*

* Quoted in D.L. Parnas, “Precisely Annotated Hierarchical Pictures of Programs”,

McMaster U. Tech Report, 1998.

© Copyright Malina Software 68

Text vs. Graphics: ExampleText vs. Graphics: Example

Off

On

Starting Stopping

start/a1()

started

stop/a2()

stopped

State: Off, On, Starting, Stopping;

Initial: Off;

Transition:

 {source: Off;

 target: Starting;

 trigger: start;

 action: a1();}

Transition:

 {source: Starting;

 target: On;

 trigger: started;}

Transition:

 {source: On:

 target: Stopping;

 trigger: stop;

 action: a2();}

Transition:

 {source: Stopping;

 target: Off;

 trigger: stopped;}

© Copyright Malina Software 69

Surface SyntaxSurface Syntax

 Textual forms

 Same as for programming languages: linear sequence of symbols

 Usually specified as a type of BNF with terminals; e.g.:

 <add-statement> ::= ‘ADD’ <left-bracket>
 <[arguments-list]> <right-bracket>
<left-bracket> ::= ‘(‘

 Tabular forms

 Constrained 2-dimensional

 E.g., spreadsheets, Parnas tables

 Graphical forms

 More complex: unconstrained 2-dimensional

• Actually 2.5 dimensional – concept of Z-dimensions (overlapping graphics)

 More flexible: user can choose which parts of the model to represent and how!

• E.g., shape, line/fill styles, x-y position, size, font, etc.

DepositFunds DepositFunds vs.

Surface
Syntax

Graphical Textual

Tabular

© Copyright Malina Software 70

Guidelines Guidelines for Effective for Effective Visual DesignVisual Design

Cognitive
Effectiveness

3. Perceptual
Immediacy

4. Visual
Expressiveness

2. Perceptual
Discriminability

5. Graphic
Parsimony

6. Cognitive fit

1. Semiotic
Clarity

1:1 correspondence 1:1 correspondence 1:1 correspondence 1:1 correspondence
between concepts between concepts
and symbolsand symbols

Different concepts Different concepts Different concepts Different concepts
should have should have
different symbolsdifferent symbols

Symbols should Symbols should
suggest meaningsuggest meaning

Use full range Use full range Use full range Use full range
of visual of visual
variablesvariables

Number of different Number of different

managablemanagable

Number of different Number of different
graphical conventions graphical conventions
should be should be cognitevlycognitevly
managablemanagable

Different visual Different visual

audiencesaudiences

Different visual Different visual
dialects for dialects for
different different
audiencesaudiences

* D. Moody and J.v.Hillegersberg, “Evaluating the Visual Syntax of UML: An Analysis

of the Cognitive Effectiveness of the UML Suite of Diagrams”,

© Copyright Malina Software 71

Extending an Existing Language?Extending an Existing Language?
Modeling Language

Features

Specification

Concrete
Syntax

Model of
Computation

Model
Type

Precision
Level

Abstraction
Range

Scope

Extension

Define Extend

Refine

© Copyright Malina Software 72

Approaches to DSML DesignApproaches to DSML Design

1. Define a completely new language from scratch

2. Extend an existing language: add new domain-
specific concepts to an existing (base) language

3. Refine an existing language: specialize the concepts
of a more general existing (base) language

© Copyright Malina Software 73

Refinement Refinement vsvs ExtensionExtension

 Semantic space = the set of all valid programs that
can be specified with a given computer language

 Refinement: subsets the semantic space of the base
language (e.g., UML profile mechanism)

 Enables reuse of base-language infrastructure

 Extension: intersects the semantic space of the
base language

Base Language SpaceBase Language Space

Refinement Extension

© Copyright Malina Software 74

Comparison of ApproachesComparison of Approaches

ApproachApproach
ExpressiveExpressive

PowerPower

Ease of Ease of

Lang.DesignLang.Design

InfrastructureInfrastructure

ReuseReuse

MultimodelMultimodel

IntegrationIntegration

New Language High Low Low Low

Extension Medium Medium Medium Medium

Refinement Low High High High

© Copyright Malina Software 75

Define, Refine, or Extend?Define, Refine, or Extend?

 Depends on the problem at hand

 Is there significant semantic similarity between the base language
metamodel and the new language metamodel?

• Does every new language concept represent a semantic specialization of some
base language concept?

• No semantic or syntactic conflicts?

 Is language design expertise available?

 Is domain expertise available?

 Cost of establishing and maintaining a language infrastructure?

 Need to integrate models with models based on other DSMLs?

 The ability to reuse the infrastructure of a language has often
led to refinement or extension as the preferred choice

 Not necessarily optimal from a purely technical viewpoint

 E.g., Z.109 (SDL profile of UML), SysML4Modelica (SysML profile),
SystemC (UML profile), AADL (UML profile), MoDAF/DoDAF (UML
profile)…

© Copyright Malina Software 76

Selecting a Language Specification MethodSelecting a Language Specification Method

 What methods should be used to specify a modeling
language?

Modeling Language
Features

Specification

Extension

Concrete
Syntax

Model of
Computation

Model
Type

Precision
Level

Abstraction
Range

Scope

© Copyright Malina Software 77

Summary: Modeling Language DesignSummary: Modeling Language Design

 Modeling language design is still much more of an
art than a science

 Few reference texts; no consensus

 Doing it well requires a rare combination of skills:

 Understanding of modeling technologies, computer language
technologies, domain knowledge, and even non-technical
knowledge such as cognitive psychology

 Many complex technical and non-technical design choices
and tradeoffs need to be made

 DSMLs are an important and inevitable trend, but
the often advertised notion of “end-user language
design” is far from practical reality

© Copyright Malina Software 119

Bibliography/ReferencesBibliography/References
 A. Kleppe, “Software Language Engineering”, Addison-Wesley, 2009

 T. Clark et al., “Applied Metamodeling – A Foundation for Language Driven
Development”, (2nd Edition), Ceteva,
http://www.eis.mdx.ac.uk/staffpages/tonyclark/Papers/

 S. Kelly and J.-P. Tolvanen, "Domain-Specific Modeling: Enabling Full Code
Generation," John Wiley & Sons, 2008

 J. Greenfield et al., “Software Factories”, John Wiley & Sons, 2004

 D. Harel and B. Rumpe, “Meaningful Modeling: What’s the Semantics of
‘Semantics’”, IEEE Computer, Oct. 2004.

 E. Seidewitz, “What Models Mean”, IEEE Software, Sept./Oct. 2003.

 T. Kühne, “Matters of (Meta-)Modeling, Journal of Software and Systems
Modeling, vol.5, no.4, December 2006.

 Kermeta Workbench (http://www.kermeta.org/)

 OMG’s Executable UML Foundation Spec
(http://www.omg.org/spec/FUML/1.0/Beta1)

 UML 2 Semantics project (http://www.cs.queensu.ca/~stl/internal/uml2/index.html)

 ITU-T SDL language standard (Z.100) (http://www.itu.int/ITU-
T/studygroups/com10/languages/Z.100_1199.pdf)

 ITU-T UML Profile for SDL (Z.109) (http://www.itu.int/md/T05-SG17-060419-
TD-WP3-3171/en)

http://www.eis.mdx.ac.uk/staffpages/tonyclark/Papers/
http://www.kermeta.org/
http://www.omg.org/spec/FUML/1.0/Beta1
http://www.cs.queensu.ca/~stl/internal/uml2/index.html
http://www.itu.int/ITU-T/studygroups/com10/languages/Z.100_1199.pdf
http://www.itu.int/ITU-T/studygroups/com10/languages/Z.100_1199.pdf
http://www.itu.int/ITU-T/studygroups/com10/languages/Z.100_1199.pdf
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en
http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en

© Copyright Malina Software 120

–– THANK YOU THANK YOU ––
QUESTIONS, QUESTIONS,
COMMENTS,COMMENTS,

ARGUMENTS... ARGUMENTS...

