
Grammar Inference Technology
Applications in Software

EngineeringEngineering

M M ik12 D H čič1 M. Mernik12, D. Hrnčič1,
B. Bryant2, A. Sprague2, Q. Liu2

L. Fürst3, V. Mahnič3

1University of Maribor, Slovenia
2The University of Alabama at Birmingham, USAy g

3University of Ljubljana, Slovenia

Novi Sad, Serbia, June 20, 2011 1/55

Outline of the Presentation

• Motivation
• Background

C t t f i f• Context-free grammar inference
• Metamodel inferenceeta ode e e ce
• Graph grammar inference
• Conclusion

Novi Sad, Serbia, June 20, 2011 2/55

Motivation

print 5
print a where a=10What Try out our newly
developed grammar

What is a p
print b+1 where b=1
print a+b+2 where a=1, b=2

computer
language
she used?

developed grammar
inference algorithm!

grammar of
this
language?she used?language?

Novi Sad, Serbia, June 20, 2011 3/55

Motivation

• Some years ago interesting questions were y g g q
posted on the Usenet group comp.compilers:

“I am looking for an algorithm that will
generate context-free grammar from given
set of strings. For example, given a setset of strings. For example, given a set
L = {aaabbbbb, aab} one of the grammar is
G  AB A  aA | a B  b | bB"G  AB, A  aA | a, B  b | bB

Novi Sad, Serbia, June 20, 2011 4/55

Motivation

“I'm working on a project for which I need g p j
information about some reverse engineering
method that would help me extract themethod that would help me extract the
grammar from a set of programs (written in
any language) A sufficient grammar will beany language). A sufficient grammar will be
the one which is able to parse all the
programs ..."

Novi Sad, Serbia, June 20, 2011 5/55

Motivation

• Those questions triggered some interesting q gg g
responses:

“Unfortunately there are infinitely manyUnfortunately, there are infinitely many
context-free grammars for any given set of
t i (C id f l ddi A Cstrings (Consider for example adding A  C,

C  D, ..., Y  Z, Z  A to the above
grammar. You can obviously add as many
pointless rules as you want this way, and thepointless rules as you want this way, and the
string set doesn't change) …"

Novi Sad, Serbia, June 20, 2011 6/55

Motivation

“Within machine learning there is a subfield g
called Grammatical Inference. They have
demonstrated a few practical successesdemonstrated a few practical successes
mostly at the level of recognizing regular
languages or subsets thereof ”languages or subsets thereof …

Novi Sad, Serbia, June 20, 2011 7/55

Motivation

“There are formal theories that address this.
However, their results are far from
encouraging The essential problem is thatencouraging. The essential problem is that
given a finite set of programs, there is a
trivial regular expression which recognizestrivial regular expression which recognizes
exactly those set of programs and no others
…”

Novi Sad, Serbia, June 20, 2011 8/55

Motivation

“There is a way to deal with this issue. Let us assume
for the moment that the program is compiled by afor the moment that the program is compiled by a
compiler. Then the grammar knowledge that you
need resides in that compiler What you do is writeneed resides in that compiler. What you do is write
a parser that parses the part of the compiler
containing the grammar knowledge If you arecontaining the grammar knowledge. If you are
lucky this is easy and you recover the BNF in a
snippet If and it is not possible to obtain thesnippet. If … and it is not possible to obtain the
source code of the grammar there is another
option You can extract the grammar from theoption. You can extract the grammar from the
manual."

Novi Sad, Serbia, June 20, 2011 9/55

Background

• Grammatical inference is a process of p
learning the grammar from positive (and
negative) language samplesnegative) language samples.

• Grammatical inference attracts researchers
f diff fi ld hfrom different fields such as pattern
recognition, computational linguistic, g p g
natural language acquisition, software
engineering, ...engineering, ...

Novi Sad, Serbia, June 20, 2011 10/55

Background

• Context-Free Grammar G=<N, T, P, S>, , ,
• L(G) = {w | S * w, w  T*}

Gi t d CFG G t ll• Given a sentence ps and CFG G we can tell
whether ps belongs to L(G) (ps  L(G)).
Such sentence is called positive sample.

• A set of positive samples is denoted with• A set of positive samples is denoted with
S+. Conversely, a negative sample belongs
t L (G) { | t L(G)} A t fto L (G) = {w| w not  L(G)}. A set of
negative samples is denoted with S-.

Novi Sad, Serbia, June 20, 2011 11/55

Background

• Given a set S+ and S-, which might be also , g
empty, the task of context-free grammar
inference is to find at least one context-freeinference is to find at least one context free
grammar G such that S+L(G) and S-L(G).
A f i i l S f L(G) i• A set of positive samples S+ of a L(G) is
structurally complete if each grammar y p g
production is used in the generation of at
least one sentence in S+.least one sentence in S .

Novi Sad, Serbia, June 20, 2011 12/55

Background

• Gold Theorem (1967) - it is impossible to () p
identify any of the four classes of languages
in the Chomsky hierarchy in the limit usingin the Chomsky hierarchy in the limit using
only positive samples. Using both negative
and positive samples the Chomsky hierarchyand positive samples, the Chomsky hierarchy
languages can be identified in the limit.

Novi Sad, Serbia, June 20, 2011 13/55

Background

• Intuitively, Gold's theorem can be explained y, p
by recognizing the fact that the final
generalization of positive samples would begeneralization of positive samples would be
an automation that accept all strings.
Si l f i i l l i• Singular use of positive samples results in an
uncertainty as to when the generalization y g
steps should be stopped. This implies the
need for some restrictions or backgroundneed for some restrictions or background
knowledge on the generalization process.

Novi Sad, Serbia, June 20, 2011 14/55

Background

• A lot of research has been done on
extraction of context-free grammars, but
the problem is still not solved sufficientlythe problem is still not solved sufficiently
mainly due to immense search space.

Novi Sad, Serbia, June 20, 2011 15/55

Background

Novi Sad, Serbia, June 20, 2011 16/55

Background

Novi Sad, Serbia, June 20, 2011 17/55

Background

Novi Sad, Serbia, June 20, 2011 18/55

Background

Novi Sad, Serbia, June 20, 2011 19/55

Background

Novi Sad, Serbia, June 20, 2011 20/55

Background

• Memetic algorithms are evolutionary g y
algorithms with local search operator
– use of evolutionary concepts (population– use of evolutionary concepts (population,

evolutionary operators)
improves the search for solutions with local– improves the search for solutions with local
search.

Novi Sad, Serbia, June 20, 2011 21/55

Context-free grammar inference

• Memetic Algorithm for Grammatical Inference

example n...
selection

MAGIc

example 1 selection

initiali-
zation

local
search

generali-
zation

evolutionary
cycle

found
grammars

- simple diff

regular
definitions mutation

parse positive
examples

evaluate

simple
- Sequitur

diff

(LISA
parser)

Novi Sad, Serbia, June 20, 2011 22/55

Context-free grammar inference

• Sequitur: http://sequitur.info/
• abcabdabcabd
0  1 1
1  2 c 2 d
2  a b2  a b

p i w i n i n // print id where id n id n• p i w i=n, i=n // print id where id=n, id=n
0  p 1 w 2, 2
1  i
2  1 = n

Novi Sad, Serbia, June 20, 2011 23/55

Context-free grammar inference

print a where c=2
i t 5 b h b 10print 5+b where b = 10print id where id=num

print num+id where id=num

Novi Sad, Serbia, June 20, 2011 24/55

Context-free grammar inference

Apply diff command!
1a2,3print id where id=num

print num+id where id=num
print id where id=num
print num+id where id=num > num

> +

print num+id where id=num

What is the difference

print num+id where id=num

But where to change the
among two samples?

g
grammar?

Novi Sad, Serbia, June 20, 2011 25/55

Context-free grammar inference

Start with the grammarStart with the grammar
that parses first sample:

N1 i t N2 h id

Use information from
LR(1) parsing on 2nd

l

Configurations returned from the
LR(1) parser:

print a where c=2
N1 ::= print N2 where id = num
N2 ::= id

sample.
LR(1) parser:

Nx → α1 • α2
Ny → β •
Nz → • γ

Novi Sad, Serbia, June 20, 2011 26/55

Context-free grammar inference

• Input samples:p p
s1,s2,...,sn (true positive)
s s s a a s s (false negative)s1,s2,...,sk,a1,...,am,sk+1,...sn (false negative)
– difference: a1,...,am

Novi Sad, Serbia, June 20, 2011 27/55

Context-free grammar inference

• Nx → α1 • α2

– if
Nx ::= α1 N1 α2

)FIRST(αs 21k 

N1 ::= ai+1 ... am

N1 ::= ε

– if
Nx ::= α1 N1

FOLLOW(Nx)s)FIRST(αs 1k21k  

Nx :: α1 N1
N1 ::= α2

N1 ::= ai 1 aN1 ::= ai+1 ... am

– if
change in this configuration can’t be made

FOLLOW(Nx)s)FIRST(αs 1k21k  

Novi Sad, Serbia, June 20, 2011 28/55

change in this configuration can’t be made

Context-free grammar inference

print a where c=2
print 5+b where b 10print 5+b where b = 10

N1 → print • N2 where id = num

N1 ::= print N2 where id = num
N2 ::= id

N1 ::= print N3 N2 where id = num
N2 ::= id
N3 ::= num +N3 :: num
N3 ::= ε

Novi Sad, Serbia, June 20, 2011 29/55

Context-free grammar inference

Production: Nx ::= α1 Ny α2Production: Nx ::= α1 Ny α2

Option
N 1 N 2Nx ::= α1 Nz α2
Nz ::= Ny
Nz ::= ε

But, how mutation is
done?

Novi Sad, Serbia, June 20, 2011 30/55

Context-free grammar inference

Nx ::= Ny Ny Nx ::= Ny
Nx ::= α Ny Nx ::= Ny Ny
Ny ::= α Ny ::= α

Nx ::= Ny Ny Nx ::= Ny
Ny ::= α Ny ::= α Ny
Ny ::= β Ny ::= β NyNy :: α Ny :: α
Ny ::= β Ny ::= βWhat about

generalization step?

y β y β y
Ny ::= ε

Novi Sad, Serbia, June 20, 2011 31/55

Context-free grammar inference

• 12 input samples of DESK language on which the
l i h dalgorithm was tested:

1. print a
2 print 32. print 3
3. print b + 14
4. print a + b + c
5. print a where b = 14
6. print 10 where d = 15
7. print 9 + b where b = 16p
8. print 1 + 2 where id = 1
9. print a where b = 5, c = 4
10 print 21 where a = 6 b = 510. print 21 where a = 6, b = 5
11. print 5 + 6 where a = 3, c = 14
12. print a + b + c where a = 4, b = 3, c = 2

Novi Sad, Serbia, June 20, 2011 32/55

Context-free grammar inference

Original grammar: Inferred grammar:Original grammar:

1. DESK ::= print E C
2 E ::= E + F

Inferred grammar:

1: NT1 -> print NT3 NT5
2: NT2 -> + NT32. E ::= E + F

3. E ::= F
4. F ::= id
5 F :: num

2: NT2 -> + NT3
3: NT2 -> ε
4: NT3 -> num NT2
5: NT3 > id NT25. F ::= num

6. C ::= where Ds
7. C ::= ε
8 D D

5: NT3 -> id NT2
6: NT4 -> , id = num NT4
7: NT4 -> ε
8 NT5 h id NT48. Ds ::= D

9. Ds ::= Ds , D
10. D ::= id = num

8: NT5 -> where id = num NT4
9: NT5 -> ε

Novi Sad, Serbia, June 20, 2011 33/55

Context-free grammar inference

Novi Sad, Serbia, June 20, 2011 34/55

Context-free grammar inference

DSL for hypertree description

Novi Sad, Serbia, June 20, 2011 35/55

Context-free grammar inference

Inferred grammar for hypertree description DSL

Novi Sad, Serbia, June 20, 2011 36/55

Context-free grammar inference

• Our approach can be used also for syntax pp y
extensions and for DSL embedding
– To embed domain-specific language (e g SQL)– To embed domain-specific language (e.g, SQL)

into another programming language (GPL or DSL)

Novi Sad, Serbia, June 20, 2011 37/55

Context-free grammar inference

• Initial grammar (ANSI C):
1. translation unit ::= external decl
2. translation unit ::= translation unit external decl
3. external decl ::= function denition
4. external decl ::= decl
6. function denition ::= declarator decl list compound stat

91. initializer ::= initializer list
93. initializer list ::= initializer
94. initializer list ::= initializer list , initializer
110. stat ::= labeled stat | exp stat | compound stat | selection stat
114. stat ::= iteration stat | jump statp

9. decl ::= decl specs init declarator list ;
10. decl ::= decl specs ;
11. decl list ::= decl
12. decl list ::= decl list decl
15. decl specs ::= type spec decl specs
27 type spec ::= int | long |

| j p
116. labeled stat ::= id : stat
117. labeled stat ::= case const exp : stat
118. labeled stat ::= default : stat
119. exp stat ::= exp ;
120. exp stat ::= ;
121 compound stat ::= decl list stat list27. type spec ::= int | long | ...

45. init declarator list ::= init declarator
46. init declarator list ::= init declarator list , init declarator
47. init declarator ::= declarator
64. enumerator ::= id
65. enumerator ::= id = const exp
67 declarator :: direct declarator

121. compound stat ::= decl list stat list
125. stat list ::= stat
126. stat list ::= stat list stat
127. selection stat ::= if (exp) stat
129. selection stat ::= switch (exp) stat
130. iteration stat ::= while (exp) stat
131 iteration stat :: do stat while (exp) ;67. declarator ::= direct declarator

68. direct declarator ::= id
69. direct declarator ::= (declarator)
70. direct declarator ::= direct declarator [const exp]
71. direct declarator ::= direct declarator []
72. direct declarator ::= direct declarator (param type list)

di d l di d l (id li)

131. iteration stat ::= do stat while (exp) ;
132. iteration stat ::= for (exp ; exp ; exp) stat
140. jump stat ::= goto id ; | continue ; | break ; | return exp ;
145. exp ::= assignment exp
146. exp ::= exp , assignment exp
147. assignment exp ::= conditional exp

i di i l i73. direct declarator ::= direct declarator (id list)
74. direct declarator ::= direct declarator ()
88. id list ::= id
89. id list ::= id list , id
90. initializer ::= assignment exp

148. assignment exp ::= conditional exp assignment operator
assignment exp
205. const ::= int const | char const | oat const

Novi Sad, Serbia, June 20, 2011 38/55

Context-free grammar inference

• Initial grammar (ANSI C):

int main() {
char str[][]; int main() {

true positive sample false negative samples:
[][];

int i;
printf("Students:");
for(i = 0; i < str.length; i++) {

printf(str[i]);
}

char str[][] = { SELECT Name FROM
Students };

int i;
printf("Students:");
for(i = 0; i < str.length; i++) {

printf(str[i]);return 0;
}

printf(str[i]);
}
return 0;

}

int main() {int main() {
char str[][] = { SELECT Name, Surname

FROM Students, Professors };
int i;
printf("Students and Professors:");
for(i = 0; i < str.length; i++) {(; g ;) {

printf(str[i]);
}
return 0;

}

Novi Sad, Serbia, June 20, 2011 39/55

Context-free grammar inference

• Inferred Grammar:
1. translation unit ::= external decl
2. translation unit ::= translation unit external decl
3. external decl ::= function denition
4. external decl ::= decl

91. initializer ::= initializer list
93. initializer list ::= initializer
94. initializer list ::= initializer list , initializer
110. stat ::= labeled stat | exp stat | compound stat | selection stat

6. function denition ::= declarator decl list compound stat
9. decl ::= decl specs init declarator list ;
10. decl ::= decl specs ;
11. decl list ::= decl
12. decl list ::= decl list decl
15 decl specs ::= type spec decl specs

| p | p |
114. stat ::= iteration stat | jump stat
116. labeled stat ::= id : stat
117. labeled stat ::= case const exp : stat
118. labeled stat ::= default : stat
119. exp stat ::= exp ;
120 exp stat ::= ;15. decl specs ::= type spec decl specs

27. type spec ::= int | long | ...
45. init declarator list ::= init declarator
46. init declarator list ::= init declarator list , init declarator
47. init declarator ::= declarator
64. enumerator ::= id
65 enumerator ::= id = const exp

120. exp stat ::= ;
121. compound stat ::= decl list stat list
125. stat list ::= stat
126. stat list ::= stat list stat
127. selection stat ::= if (exp) stat
129. selection stat ::= switch (exp) stat
130 iteration stat ::= while (exp) stat65. enumerator ::= id = const exp

67. declarator ::= direct declarator NT1
68. direct declarator ::= id
69. direct declarator ::= (declarator)
70. direct declarator ::= direct declarator [const exp]
71. direct declarator ::= direct declarator []
72 di d l di d l (li)

130. iteration stat ::= while (exp) stat
131. iteration stat ::= do stat while (exp) ;
132. iteration stat ::= for (exp ; exp ; exp) stat
140. jump stat ::= goto id ; | continue ; | break ; | return exp ;
145. exp ::= assignment exp
146. exp ::= exp , assignment exp
147 i di i l72. direct declarator ::= direct declarator (param type list)

73. direct declarator ::= direct declarator (id list)
74. direct declarator ::= direct declarator ()
88. id list ::= id
89. id list ::= id list , id
90. initializer ::= assignment exp

147. assignment exp ::= conditional exp
148. assignment exp ::= conditional exp assignment operator
assignment exp
205. const ::= int const | char const | oat const
208. NT1 ::= = SELECT id NT2 FROM id NT2 | ϵ
210. NT2 ::= , id NT2 | ϵ

Novi Sad, Serbia, June 20, 2011 40/55

Metamodel inference

• As a model conforms to a metamodel in a
similar manner to how a program conforms to a
grammar, the metamodel inference can be g ,
defined as follows.

• The set of all models that conform to a given• The set of all models that conform to a given
metamodel MM will be called the language of
the metamodel and denoted L(MM). Given a
model instance m and a metamodel MM we can
tell whether m conforms to MM (m  L(MM)).

Novi Sad, Serbia, June 20, 2011 41/55

Metamodel inference

• A set of positive samples is denoted with S+.
Conversely, a negative sample belongs to
L(MM), which denotes a set of all models that (),
do not conform to metamodel MM. A set of
negative samples is denoted with S-negative samples is denoted with S .

• A set of positive samples S+ of a metamodel
MM is structurally complete if each
metamodel element appears in at least one pp
model in S+.

Novi Sad, Serbia, June 20, 2011 42/55

Metamodel inference

• Given a set of positive samples S+ and set of
negative samples S-, which might be also
empty, the task of metamodel inference is to p y,
find at least one metamodel MM such that
S+L(MM) and S- L(MM)S L(MM) and S  L(MM).

Novi Sad, Serbia, June 20, 2011 43/55

Metamodel inference

• Metamodel Inference from Model Instances
(MIMI)

Novi Sad, Serbia, June 20, 2011 44/55

Metamodel inference

• MIMI model folderkind::modelkind
{

<model id="xxx" kind="modelkind">
<name>modelkind</name>

submodels submodel, submodel …;
fields field1, field2 …;
connections

connkind: src → dst;
……

}

<attribute>
<value>field1</value>

</attribute>
<attribute>

<value>field2</value>
</attribute>

……
<atom> … </atom>
<set> … </set>
<reference> … </reference>
<connection> … </connection>

</model>
model folderkind::submodel
{

submodels;
fields fields1, fields2 …;

i

model folderkind::submodel
{

submodels;
fields fields1, fields2 …;

iconnections;
}

connections;
}

Novi Sad, Serbia, June 20, 2011 45/55

Metamodel inference

• ESML (Embedded System Modeling Language)

Novi Sad, Serbia, June 20, 2011 46/55

Metamodel inference

• Original ESML metamodel - Configuration viewpoint

Novi Sad, Serbia, June 20, 2011 47/55

Metamodel inference

• Inferred ESML metamodel - Configuration viewpoint

Novi Sad, Serbia, June 20, 2011 48/55

Metamodel inference

• Our approach to model evolution using metamodel
i finference

Novi Sad, Serbia, June 20, 2011 49/55

Graph grammar inference

Positive and negative samples for hydrocarbons
with single and double bondswith single and double bonds

Novi Sad, Serbia, June 20, 2011 50/55

Graph grammar inference

Inferred graph grammar

Novi Sad, Serbia, June 20, 2011 51/55

Graph grammar inference

Positive samples
for statechartsfor statecharts

Novi Sad, Serbia, June 20, 2011 52/55

Graph grammar inference

Inferred graph grammar

Novi Sad, Serbia, June 20, 2011 53/55

Conclusion

Hope that I convinced you
that grammatical inference is
i t ti d f l

Yes, I will used in my
interesting and useful.current project on

spam filtering.

Novi Sad, Serbia, June 20, 2011 54/55

Conclusion

More information at:
http://www.cis.uab.edu/softcom/GrammarInference/

Sent comments/questions to:
marjan.mernik@uni-mb.si; mernik@cis.uab.edu

This work was supported in part by NSF award CCF-0811630
and by ARRS bilateral project BI-US/11-12-031

Novi Sad, Serbia, June 20, 2011 55/55

